Derivation of Analytical Expressions

Moments of Distributions Without Cell Division. To derive an ap-
proximate analytical solution to the model shown in Fig. 1 Inset, we at first
neglect cell cycle effects. Taking advantage of the constraint on the number
of DNA molecules

(D) +(C) =mn, [1]

where n is the copy number of the gene of interest on the chromosome, we can
write down the master equation for the system as a function of four variables.
Let the separate species in Fig. 1, {D,C,T,mR, P} be labeled {0, 1,2, 3,4},
respectively. Furthermore, let p(ny, na, n3, n4,t) be the probability that there
exist, at time ¢, n; molecules of C, ny, molecules of T', n3 molecules of mRNA,
and n4 protein molecules, then
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where the dots denote similar terms, one for each rate constant. Rather than
write down this long equation, we transform it straight away to an expression
for the generating function

F(z1, 29,23, 24,8) = Y 21252 25° 21 p(n, o, ng, g, 1), [3]
ni,n2,n3,n4

which can be thought of as a kind of discrete Laplace transform. Defining
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we arrive at
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Clearly, finding a full solution of Eq. 5 is very difficult. However, from
Eq. 3 several properties of the solution are transparent. If all the z; are
set to unity (w = x = y = z = 0), then normalization implies that F' =



1. Differentiating F' with respect to a z;, and then setting all z; to unity,
gives (n;), whereas performing the same operation after two derivatives gives
(n;(n; —1)). Because we intend to only calculate the intrinsic noise in protein
levels, that is, the variance in n4, an expansion of F' around z; = 1 (for
small w, x, y, and z) should be suitable [this is equivalent to the method of
compounding moments (1) and is exact in our case as each moment depends
only on moments of lower or equal order].
Because the protein degradation rate is much smaller than all others in
Fig. 1 Inset,
d1 < {fo,bo,ko,vo,di),’vll}, [6]

we assume that all the time dependence in F' comes purely from the protein
terms. Levels of C, T, and mR are assumed to be at their steady-state values.
In this case, we can write
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where, for example, X3 = (mR), X;; = (C?) — (C), and X3,4(t) = (mR P).
Putting Eq. 7 into Eq. 5 and comparing coefficients gives,

X, = Jokon [8]

Xlzf"—" X, — Jokon o
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and -
X4 = Ung - d1X4. [9]

Similarly, it is possible to solve for all the X;;. These obey
d6X33 = vpXo3

voX22 = koXi2
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(E -+ U())X12 — f()nXQ = kOXll
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(do +v0) Xz — vo X2 = koXus, [10]
solution of which leads to
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as well as the result for the mRNA noise given in the main paper. The cross-
correlation functions are negative because of the constraint, 1, which leads
to n2, = —1/n. For example, when n = 1, every time C' is made, D vanishes
and vice versa, giving exact negative correlation. This negative correlation
propagates along the chain of different species in Fig. 1 Inset, leading to
mRNA being made in a pulse-like manner with the number of C' molecules
increasing, then falling, resulting in a growth in 7" that falls to produce mk.
For the time-dependent cross correlations, we find

Xy = v\ X3+ fonXy — (d + ) X1y
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where the over dots denote differentiation with respect to time. Eq. 9 can
be simply integrated (remembering X, = (P))
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dq
where (P(0)) = m. This result is the starting point for the solution of Eq.
15. In keeping with approximation 6, we assume sufficient time has passed
that the only exponentials that need be considered in the solution (the others
are very small) are those in d;t. In this case, for example,

’Ung dlm — U1X3e*d1t 4 Uing
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with Xo4, X34, and Xy being given by similar, though more complicated,
expressions. Upon simplification and using the definition

X14(t) = fon ( [17]
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the equation for X, gives

Gm(t) = (P#)*) = (P(®))’
= (1—e®) (me® £ A[1+2Q (1+e)]),  [19]

with {2 a measure of the fluctuations in mRNA,
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Eq. 19 gives the intrinsic variance in protein number (with all extrinsic
variables held fixed) as a function of time given that at ¢ = 0, (P(0)) = m and
(P(0)%) = m?. Ideally, m should not be a constant but should be determined
by the cell cycle. To facilitate this, let us write down a generating function
for just the protein that gives Eq. 16 and Eq. 19 on expansion. Formally,
this generating function is

Qm(2z,t) =D qum(t)2", [21]

where ¢, (t) is the probability of having n proteins at time ¢, given that
there were m proteins at time ¢t = 0. Expanding around z = 1,

Qu(z1) = 1+ (2= 1)(P@) + 5 (= = 17[(P(0) — (P)] +--  [22]

and so this function is determined, from Eqs. 16 and 19, up to order (z —1)3.

As
(P(t)) = (Po(t)) +me "
(P()) = (PY®)+e ™'m(1+2(P(t)) + m(m — 1)e™>4!,  [28]
where the subscript zero denotes evaluation at m = 0, one can write
Qm(z,t) = Qo(z, 1) [1 —e Bt 4 ze_dlt]m, [24]

which also has the desired property, Eq. 22. This formulation will prove very
useful.

In fact, as the gene encoding protein, P, is replicated at t = 4, two
generating functions need to be considered, Q!)(z,t), which is valid when



the gene copy number is n and Qg)(z, t), which holds after replication when
the copy number is 2n. Defining

Y =1—e % [25]
then
Q=) = QDY+ -1)]"
= Zz”qum [26]
where qu)m is now the probability of having n proteins at time t given m at

t = 0 in (copy number) state i.

Including Cell Division. The number of proteins in the cell will be
partly controlled by the cell cycle; dilution due to partition into daughter
cells at the end of cell division can play a significant role in keeping protein
numbers low. To incorporate this effect into our analysis, let P;(n) be the
probability of finding n proteins at the start of the sth division cycle. Then
P,.1(n) is related to P;(n) via a transfer probability U(n|n’),

Pini(n Z U(nln")P, [27]

In our calculation, just one daughter cell is followed, and we assume that each
protein has a 50% probability of being kept in this cell (and so a 50% chance
of being discarded into the one not followed). Given m proteins just before
cell division, the probability of having n immediately after is just binomial

<7:> 9=m 28]

For a cell cycle of length 7', the transfer probability U is given by
m —m
U(n|n') = Z, <n> 2% (T = ta)gyw (ta), [29]

where gene replication at time ¢4 is included, and the definitions of the ¢
have been used (see end of previous section).



After many divisions, the protein number, rather than tending to a steady-
state, tends to a limit cycle. Mathematically, as the limit cycle is approached,
P;(n) is expected to tend to P*(n), which obeys (see Eq. 27),

P*(n ZU n|n')P*(n'). [30]
To solve Eq. 30 for P*, we again turn to generating functions. Defining
=Y 2"P*(n) [31]
n=0
multiplying Eq. 30 by 2" and summing over all n, gives
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where Eq. 29 has been used. From definition 26, this can be written as

!’

F*(z) = ZQ(2)<1+Z/2 tq) Y1+1(1+z)(1—Y1)m
xqfn?w (ta)P" (), [33]
with
Vi=1—e 4l t) [34]

The power of writing Q{¥)(2,t) in the form 26 should now be apparent; it
also allows the sum over m’ to be evaluated similarly,

) = (A2 T = ) (Y4 (420 - 1)/2,0)
x L[Vt i+ (1421 =)0 - )] P, [35]

where Y5 is
Yo =1—e %l [36]

Finally, Eq. 31 allows the last summation to be carried out
F*(z) = QP((1+2)/2,T - ta)Q (Vi + (1 +2)(1 - Y1)/2,ta)
xF* (Yo + (Y1 + (1+2)(1 - ¥1)/2)(1 - V). [37]
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The solution of Eq. 37 will give the generating function related to P*(n),
the probability of finding n proteins at the beginning of the cell cycle given
that the bacterium has divided enough times to have reached a limit cycle
state. Because we are only interested in calculating the variance in protein
number, only the first two moments of F*(z) are required. Writing

1
F*(z):1+(z—1)ff+§(z—1)2f§+--- [38]
and then comparing coefficients of z — 1 in Eq. 37 allows f; and f5 to be
determined: for example,

o 2ABR(T —ta)) + (1 = Y1)(Po(ta))
N . 39

with a similar expression for f;.

Because we now know the probability distribution P*(n), we can write
the generating function for the protein number during the two stages of the
cell cycle. Given that the protein number has reached a limit cycle state,
and defining ¢ = 0 to be at the beginning of this cycle, i.e., immediately after
cell division, then for

0<t<ty
n (1 *
FOGY) = 3o gi (£)P* (m)
= Y V)Y +20-Y)]"P*(m)
= Q1 F (Y +2(1-Y)), [40]
with the summations evaluated by using Eq. 26 and Eq. 31 again.

tqg <t < T: In this case, because of gene replication, the expression is a
little more complicated. Defining

Y/ =1—e @lt-ta) [41]
one has
2 1 *
FO@) = 3 20t = ta)al, (ta) P (m)

n,m,m’
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xF*(Ya+ (Y +2(1 = Y))( 1—Y2) [42]

Differentiation of these two generating functions with respect to z will
give the mean and variance of the intrinsic protein number distribution. The
protein mean is given in the main paper, and the noise satisfies

M (£) = + Q0 (1), [43]

L
(P(t))

with ®;(¢) given in the main paper and 2 by Eq. 20. Using expressions 13,
14 and that for the mRNA noise, Eq. 20 simplifies to

Qo 3} (1 lej")ﬁ [44]

in the limit of d;/dj < 1. Eqgs. 43 and 44 comprise the expression for the

intrinsic protein noise, 7, given in the main paper.

Parameters Used in Simulations

All parameter values are given in Table 3.



Process

Parameters

RNAP binding to DNA

Free RNAP concentration = 30 nM (2)
Binding rate 1.4 x 107 M~!s~! for APy, (3)
= fo =042 s 1

bo = 0.1 s7! [chosen to give an equilibrium
constant of 1.4 x 108 M~ (2)]

Transcription initiation rate

ko; ranges from 0.001 s7! to 0.1 57! (4)

(closed to open complex isomerization)

Formation and degradation
of RBS on mRNA

vo = 0.3 s~! [RNAP moving at 40 nt s~ (5)]

mfo = 0.114 s~ (chosen so that the average
number of proteins per transcript = 15)
do = 0.1 s™1

Binding of ribosome

Free ribosome concentration = 400 nM
(order of magnitude larger than RNAP)
binding rate 1 x 107 M~1s~!

= mf; =4.0s7!

mb; = 0.4 s~! [chosen to given an equilibrium
constant of 2.5 x 10”7 M~ (6)]

Translation

k1 =03 g1 (6)
v1 = 0.048 s71 [given a 1000 nt protein
and a translation rate of 48 nt s=1 (7)]

Protein degradation

di =6.42 x 107° 5! (¢; ~ 3 hours)

Cell cycle time

Gene replication time

T = 60 min (chosen for at most two

chromosomes per cell)

tg=04T

Cell volume and growth

Linear growth (8)
V) =Vo(1+t/T) for 0<t<T
and Vp = 2.5 x 10715¢

Table 3. Parameters suitable for constitutive gene expression in Fscherichia
coli. Abbreviations: RNA polymerase (RNAP), ribosome binding site (RBS),
nucleotide (nt).
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